Thursday, November 28, 2019
Bending of Beam Lab Report Sample
Bending of Beam Lab Report Paper Where P is the applied force, L is the length of beam, E is the modulus of elasticity f aluminum, and I is the moment of Inertia. For a beam of rectangular cross section, say of width w and thickness t, the same mid spam deflection of the centrally loaded beam when the flat side is supported, then be compared to that when the thin side is supported. The moment of inertia for the respective situations are given by: II = WTG/12 and 12 = wet/12 It could be readily verified that the later situation offers less deflection under the same load. 2. Introduction: In this experiment we tested the deflection of a beam when it is placed with its widest and shortest side of its cross section on the supports. In order to examine he deflection of the beam, we applied the load at the center of its length. In addition, observing the deflection on the beam, we wanted to observe if the behavior of the deflection would be different when the position of the beam changed. After conduction the experiment we conclude that when the beam is positioned with its widest side on the supports, deflection happens faster and as more load is applied the deflection increases. . Experimental Procedures and Setup: Case l: The dimensions of the beam was measured and the cross sectional area and the moment of inertia were calculated. Next, the beam was placed on the tan such that the widest side of the cross section is on the supporters, and the scale was reset. The clearance between the middle of the beam and another beam placed on the top of the stand was measured. The beam was loaded the middlemen in 2. 745 lbs. Increments up to 6. 745 lbs. The change in clearance of every load step was measured and data was recorded. We will write a custom essay sample on Bending of Beam Lab Report specifically for you for only $16.38 $13.9/page Order now We will write a custom essay sample on Bending of Beam Lab Report specifically for you FOR ONLY $16.38 $13.9/page Hire Writer We will write a custom essay sample on Bending of Beam Lab Report specifically for you FOR ONLY $16.38 $13.9/page Hire Writer From this experiment we learned that when when a beam will be placed with the wide side on supports it will show less deflection and is more efficient to use. 5. Source of Error: There are some errors between the theoretical and the experimental deflection. This error might have happened because of the inaccuracy in measuring the length between the beam and the ground, which happens because of not measuring the length perpendicular to the beam itself. Therefore, the reading of the height might be different from time to other, so, the calculation of deflection is different from the theoretical. . Conclusion: As mentioned before, with this experiment we concluded that the deflection of a beam is different depending on its position. We also concluded that when the beam is positioned with its thin side on the supports it is able to carry more load than when it is positioned with its flat side on the supports. This is due to the fact the beams inertia change as the position changes. When the beam is placed on its flat side its inertia is less than when sectioned on its thin side where the inertia is bigger. This means that because the flat side has less inertia there will be less resistance in changing its position, so it will deflect more. Because the thin side has more inertia, it will have more resistance in changing its state.
Sunday, November 24, 2019
Fractional Distillation Organic Lab Report Essays
Fractional Distillation Organic Lab Report Essays Fractional Distillation Organic Lab Report Paper Fractional Distillation Organic Lab Report Paper If such ideal conditions are not possible as is usually the casethen simple distillation can be applied as long as he liquid in question is composed of compounds that differ in volatility such that their boiling points differ by at least 40 to 50 degrees Celsius. Because the very essence of simple distillation is relies upon the idea that more volatile compounds have lower boiling points and thus when heated to this boiling point will occupy most if not all of the vapor above the liquid pot residue. Because the difference in boiling point for the compounds in a mixed liquid must at least differ by 40 to 50 degrees Celsius in order for purification through Simple Distillation, this procedure should not result in a high amount of impurities in he distillate or pot residue since the difference between both boiling points is great enough that most of the lower boiling point liquid should vaporize without vaporization of the higher boiling point liquid. The experimental set up for the simple distillation procedure is the standard procedure which invokes the use of a a heat source, a magnetic stirrer, a receiving flask for the distillate to be collected in, a condenser with an accompanying inflow of cold water, a stilled, a thermometer, a rubber adapter, an adapter, and check clips. The check clips are seed to stabilize the glass joints while the condenser cools the vaporized gas to liquid. : Because the stilled is where the vapor collects, and the thermometer attached to the top of the stilled must record the temperature of the vapor and thus boiling point of the distillatethe bottom of the mercury bulb of the thermometer must be directly adjacent to the bottom of the opening of the arm of the stilled. When distilling a stir bar must also be used in order to disturb the heat evenly throughout the solution. The apparatus must be loosely covered in cotton and aluminum foil, such that the apparatus is transformed into an isolated system from the environment that does not receive nor release the added heat into the surroundings. This ensures that all of the added heat and temperature change results from boiling point properties of the compounds in the solution. Fractional distillation, like simple distillation is also a separation technique that takes advantage of the differing boiling points of two compounds in a liquid. This technique however, differs from simple distillation in the sense that it can be applied to differences in boiling points of two compounds more sensitive than 40 to 50 degrees Celsius, i. E. 0 to 30 degree Celsius of a difference. This implies that while the lower boiling point liquid occupies most if not all of the vapor at its respective boiling point, in fractional distillation this vapor is composed of the vaporized lower boiling point compound as well as a significant amount of the higher boiling point liquid. In fact, if simple distillation were to be used to separate a binary mixture when fractional distillation was in fact the appropriate technique to be applied, such a distillation would yield an impure distillate. This character would be self-evident in the temperature against volume rape of such an inappropriately applied simple distillation as the temperature would steadily increase and eventually level off only once, indicating that the distillate collected was no more special than the condensed liquid that could be collected from simply heating a compound and then cooling it although the distillate obtained would be more concentrated in lower boiling point liquid. One method in which this characteristic of simple distillation could be applied to purify a binary mixture with compounds that do have sensitively differing boiling points is that the simple distillations could be applied in series. To carry this out, he initial mixture would be broken up into smaller fractions and each fraction would be distilled according to simple distillation procedures until a pure drop of lower boiling point liquid could be collectedsince this pure concentrated compound boils before the other less volatile compound. This obviously is not practical as it yields a very small volume of distillate; however the theory which supports such a procedure is the same theory which the procedure of fractional distillation is built upon. The only difference between the apparatus set-up used for simple distillation and that which is used for fractional distillation is hat fractional distillation makes use of a fractional distillation column which is in between the stilled and the flask containing the pot residue. Some examples of fractional distillation columns are Figurer columns and Hempen columns. Figurer columns are marked by indentations while the Hempen column is often packed with material such as glass beads or stainless steel sponge as well as glass tubing sections. The purpose of such a column is a bit muddled at first however when placed in the context of the theory of the series of simple distillations it can be understood that this column simply concatenates the rise of simple distillations into one process. The reasoning is a hybrid of both Dalton and Royalty Law in that each compound will exhibit a characteristic partial pressure in the vapor at each level of the column with accompanying mole fractions. Therefore at each level of the column there are differing mole fractions of each compound in the vapor with an increasing amount of mole fraction of the more volatile compound at higher levels of the column. Such a gradient is obtained by maintaining the bottom of the distilling column hotter than the top. As mentioned previously, this has the effect of producing a series f simple distillations within the column due to the fact that the vapor that condenses near the top of the column is repaired when it is near the bottom, hotter portion of the column. Such liquid is repaired and recombined with vapor that is concurrently rising from the still pot, this combined vapor becomes increasingly concentrated in lower boiling point liquid while the temperature of the stillest rises, approaching the boiling point of the pure lower boiling point liquid. Because the column provides in essence, a length of simple distillations, the length can also affect the degree to which the binary mixture is purified. The fractional distillation column is designed as such that each level corresponds to an ideal simple distillation in the series of simple distillations which the fractional distillation experiment is modeled after. Because conditions are never as ideal as desired, a column can be characterized by the degree to which its distilling behavior effectively models the ideal series of simple distillations meant to be performed within it. Therefore the efficiency of columns is often described in terms of theoretical platesin this case the term plates simply refer to the level f the column and its respective theoretical simple distillation. Similarly, HEAT or height equivalent to a theoretical platemerely describes the length of the column in terms of theoretical plates contained where length per theoretical plate is the unit describing such a length. The efficiency of fractional distillation columns can therefore be altered by using column packing material whose surface area of contact with the vapors are directly proportional to the amount of series of simple distillations which can be executed. Other factors affecting the efficiency are the length of the columnwhich relates to the HEAT as rebelliously statedthe maintenance of the temperature gradient that is used to reappoint the returning condensate, and the difference between boiling points of the liquids. Applying the aforementioned concepts of Simple and Fractional Distillation to Figure 1 in the Appendix, it can clearly be discerned that there are two distinct plateaus at two different temperatures which correspond to the boiling points of each of the compounds in the binary mixture. The first plateau is that of the lower boiling point, more volatile compound and occurs near 52 degrees Celsius with the second plateau of the higher boiling point, less volatile impound occurring near 89 degrees Celsius; in between these two plateaus is a steady increase in temperature of the temperature. Because Figure 1 from the Appendix varies temperature with respect to volume, Figure 1 indicates that while the temperature was remaining the constant during the plateaus an increasing volume of distillate was actually being collected in the receiving flask (falcon tubes). Through similar reasoning, it can also be concluded that the rapid increase of temperature in between the plateaus corresponds to only a slight increase of distillate collected in between the plateaus. The distillate collected during the first plateau, during the rapid increase in temperature in between both plateaus, and the last plateau are Fraction A, B and C, respectively. After reviewing Figure 1, it was hypothesized that the first plateau corresponded to a compound with a boiling point from 52 to 54 degrees Celsius and the second plateau corresponded to a compound with a boiling point from 84 to 89 degrees Celsius. When referring to the boiling points of the possible compounds it was determined that the first and second plateaus likely corresponding to acetone boiling point of 56. Egress Celsius and Heptanesboiling point of 98. 4 degrees Celsius. While the actual boiling point of Heptanes is 8 degrees Celsius higher than the experimentally hypothesized boiling point, it was the closest boiling point that matched that of the second plateau in Figure 1. The discrepancy between the actual and experimental boiling point was most likely due to the fact that the heating applied was not enough or human errorof which will be described shortly. For Fraction A, approximately 14 ml was obtained, for Fraction B approximately 6 ml was obtained, and for Fraction C approximately 7 ml was obtained. These results immediately raise concern as Fraction B should ideally be a very small amount of mixed compound since the amount of liquid obtained is inversely proportional to the degree of efficiency obtained through the particular fractional distillation. This error resulted mostly because of the amount of liquid the receiving falcon tubes could hold. Fraction B as described by the graph was actually never separated. When separating the first fraction of liquid, the falcon tube filled too quickly, thus requiring another falcon tube to continue collecting Fraction A. Out of confusion and lack of preparation at a critical point in the experiment, Fraction B as described in Figure 1 was actually collected in the Falcon tube. This impurity therefore is most likely the source of the discrepancy between the actual boiling point of heptanes and the experimental temperature of the second plateau in Figure 1. Therefore although the subsequent chromatography results are referred to as Fractions A, B and C, such reference is unfortunately of no relation to the theoretical identities of Fraction A, B, and C as defined in ideal fractional distillation experiments. The chromatography exults, Figures 3-5 depict the ratios of compound obtained in the Fractions A, B, and C respectively while Figures 6-8 correspond to a 1:1 mixture of Fraction A with Acetone, a 1:1 mixture of Fraction C with Heptanes, and the unknown mixture before distillation, respectively. In each of the chromatography results of the fractions the Area Report is used to determine the ratio of the compound in each of the fractions, this area report is merely describes the area under each of the peaks as a percentage of the total area under all of the peaks, where each peak is characteristic of a compound in the binary mixture. As GO relates retention time to the volatility of the compound, compounds that elute at greater retention times correspond to the compound that is less volatile or of higher boiling point and vice versa. Therefore Figure 3 that depicts Fraction A, or the distillate of lower boiling point it shows that the ratio of lower boiling point compound to higher boiling point is 1. 829 : 1 or about 2 : 1. Similarly Fraction B in Figure 4 shows a ratio of lower boiling point compound to higher boiling compound of about 1. 4:1, and Fraction C in Figure 5 shows such a ratio to be about 1. 33 : 1. The experiment therefore did have some success as well as failure. When referring to the pre- fractional distillation GO results (Figure 8), a ratio of about 6. 5 : 10 is obtained for lower boiling point liquid to higher boiling point liquid. Therefore the GO results in Figures 3-4 show a significant increase in the concentration of lower boiling point liquid indicating that the lower boiling point compound was separated to a greater degree. Despite this however, Figure 5 shows that there is still a significant amount of lower boiling point liquid in the distillate of higher boiling point liquid. Therefore even though these figures do show an increase in lower boiling point distillate as the experiment progressed, the ideal results would yield Fraction A to be most if not all lower boiling point liquid, Fraction B to have a greater amount of higher boiling point liquid than lower boiling point liquid, and Fraction C to be most if not all higher boiling point liquid. In order to determine whether the unknowns were those as hypothesized previously in the analysis of Figure 1, two assays were prepared: one assay of a 1:1 mixture of Fraction A solution and Acetone and one assay of a 1:1 mixture of Fraction C mixture and Heptanes. While Figure 6 does show some absorbency at the characteristic higher boiling point peak, this was dismissed as due to error resulting from impurities since the ratio of lower boiling point liquid to higher boiling point liquid increased to 4. 1 : 1. Similarly, Figure 7 shows a very slight absorbency at the characteristic lower boiling point peak. This peak was also dismissed as error resulting from impurities since the ratio of lower boiling point liquid to higher boiling point liquid decreased to about 1 : 43. Therefore the identities of the lower boiling point and higher boiling point compounds in the unknown 30 ml unary mixture Acetone and Heptanes respectively and thus correct as previously hypothesized. Conclusion: This experiment was a success in the sense that solutions of greater concentration of lower boiling point Acetone and higher boiling point Heptanes were separated and their identities as determined by the fractional distillation temperature against volume graph were correctly determined and confirmed with GO chromatography.
Thursday, November 21, 2019
To See and Not See Essay Example | Topics and Well Written Essays - 500 words
To See and Not See - Essay Example For instance, Virgil is known to have lived in blindness for nearly forty-five years and when this surgery is fronted up, for him it does not seem oblivious of any worries given that he longed to see. Several reasons can be suggested as to whether the surgery was right or wrong, but, it is clear even before the operation that the success of the surgery would have meant a new hope for all cases of blindness like Virgil. In essence, the success of the surgery would have appeared as start up for surgeries for the blind people in the future. According to Amy, there was nothing to be lost given that Virgil was already blind and not trying the surgery even if it would fail would have been detrimental (Sacks, 2012). Therefore, by pushing for the surgery, Amy was doing the right thing given that at the end of it all, it was successful and Virgil got his sight back despite a few challenges of confusion upon regaining back his sight. Additionally, the case of Gregoryââ¬â¢s patient who received transplant at the age of fifty years was an indication that the surgery could be successfully achieved regardless of age. Several other surgeries of similar kinds had been done thus, indicating that Virgilââ¬â¢s could succeed (Sacks, 2012). This type of surgery that was performed on Virgil in 1991, and since then, based on the technological advancements that have been witnessed in the field of medicine, it would be expected that the methods of conducting the surgery have been advanced. Other than this, the advantages attached to the success of this surgery would be beneficial to a blind patient. Hence, I would gladly support someone I knew who would be contemplating this surgery. However, as Sacks notes in his book, the patients who have undergone through this process, just like Virgil, are commonly faced with the challenge of the state of confusion in
Subscribe to:
Posts (Atom)